Term	Week	Focus	Summary	Learning Outcomes	Learning skills
	1	Integration	Further Integration techniques	Explore partial fractions, odd and even powers of trigonometric functions and volumes of revolution.	- Automaticity - Meta-cognition Resilience
	2	Mechanics	Vectors in 3D	Explore vectors using i, j and k notation and solve problems using calculus.	- Critical and logical thinking - Precision - Intellectual playfulness
	3	Differential equations	1st order differential equations	Explore forming and solving 1st order differential equations with separable variables	- Speed and accuracy - Automaticity - Flexible thinking
	4	Numerical Methods	Estimating using noncalculus methods	Explore change of sign to find root in an interval, Iteration formula and its use to find roots of equations approximate values, estimating areas under curves using midordinate and Simpson's rule.	- Originality - Fluent thinking - Generalisation
	5	Vectors	Vector Algebra	Explore notation and arithmetic, position vectors in 3D, parallel vectors, unit vectors, magnitude of a vector.	- Strategy planning - Connection finding - Self regulation
	6	Vectors	Vector Algebra	Explore properties of a line joining two points, vector equation of a straight line, intersecting lines.	- Critical and logical thinking - Precision - Intellectual playfulness

Subject: Mathematics - Mechanics

	1	Mechanics	Forces	Explore using F=ma with variable accelreation and projectile motion.	- Problem solving - Fluent thinking - Generalisation
	2	Mechanics	Forces	Explore the equation of a trajectory and the range for projectiles.	- Strategy planning - Connection finding - Self regulation
	3	Mechanics	Work, Energy and Power	Explore calculation of work done against resisting force.	- Big picture thinking - Hard working - Self regulation
	5	Mechanics	Work, Energy and Power	Explore power as rate at which work is being done (driving force D) $\mathrm{P}=\mathrm{Dv}$ Energy(Potential, Kinetic) and the Work Energy principle and conservation of mechanical energy.	- Problem solving - Automaticity - Generalisation
	6	Mechanics	Uniform Circular Motion	Explore angular velocity and acceleration, notation, motion in a horizontal circle.	- Critical and logical thinking - Precision - Intellectual playfulness

