

Year: 11 Subject: Further Pure Mathematics

Term	Week	Focus	Summary	Learning Outcomes	Learning skills
Term 2.1	1	Surds and Log functions	Surds	Write a number exactly using Surds, rationalise the denominator of a Surd.	AutomaticityMeta-cognitionResilience
	2	Surds and Log functions	Logarithms and exponentials	Be familiar with the functions a^x and $\log_b x$ and recognize the shapes of their graphs. Be familiar with functions including ex and similar terms, and use them in graphs. Use graphs of functions to solve equations	 Critical and logical thinking Precision Intellectual playfulness
	3	Surds and Log functions	Logarithms and exponentials	Rewrite expressions including powers using logarithms instead. Understand and use the laws of logarithms. Change the base of a logarithm. Solve equations of the form $a^x = b$	 Speed and accuracy Automaticity Flexible thinking
	4	Scalar and Vector Quantities	Notation	Use vector notation and draw vector diagrams.	OriginalityFluent thinkingGeneralisation
	5	Scalar and Vector Quantities	Vectors	Perform simple vector arithmetic and understand the definition of a unit vector.	Strategy planningConnection findingSelf regulation
	6	Scalar and Vector Quantities	Vectors in two dimensions	Use vectors to describe the position of a point in two dimensions.	 Critical and logical thinking Precision Intellectual playfulness

Year: 11 Subject: Further Pure Mathematics

Term 2.2	1	Scalar and Vector Quantities	Vectors in two dimensions	Write down and use the Cartesian components of a vector in two dimensions.	 Problem solving Fluent thinking Generalisation
	2	Scalar and Vector Quantities	Vectors in two dimensions	Use vectors to demonstrate simple properties of geometrical figures.	Strategy planningConnection findingSelf regulation
	3	Differentiation	Standard Derivatives	Differentiate e ^{ax} , sinax and cosax.	Big picture thinkingHard workingSelf regulation
	4	Differentiation	Further Differentiation	Use the Chain rule to differentiate more complicated functions.	 Problem solving Strategy planning Meta-cognition
	5	Differentiation	Gradients at points of Curves	Find the equation of the tangent and normal to the curve <i>y</i> = f(<i>x</i>).	AbstractionProblem solvingGeneralisation